Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42.

نویسندگان

  • P J Brockie
  • D M Madsen
  • Y Zheng
  • J Mellem
  • A V Maricq
چکیده

In almost all nervous systems, rapid excitatory synaptic communication is mediated by a diversity of ionotropic glutamate receptors. In Caenorhabditis elegans, 10 putative ionotropic glutamate receptor subunits have been identified, a surprising number for an organism with only 302 neurons. Sequence analysis of the predicted proteins identified two NMDA and eight non-NMDA receptor subunits. Here we describe the complete distribution of these subunits in the nervous system of C. elegans. Receptor subunits were found almost exclusively in interneurons and motor neurons, but no expression was detected in muscle cells. Interestingly, some neurons expressed only a single subunit, suggesting that these may form functional homomeric channels. Conversely, interneurons of the locomotory control circuit (AVA, AVB, AVD, AVE, and PVC) coexpressed up to six subunits, suggesting that these subunits interact to generate a diversity of heteromeric glutamate receptor channels that regulate various aspects of worm movement. We also show that expression of these subunits in this circuit is differentially regulated by the homeodomain protein UNC-42 and that UNC-42 is also required for axonal pathfinding of neurons in the circuit. In wild-type worms, the axons of AVA, AVD, and AVE lie in the ventral cord, whereas in unc-42 mutants, the axons are anteriorly, laterally, or dorsally displaced, and the mutant worms have sensory and locomotory defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The C. elegans homeodomain gene unc-42 regulates chemosensory and glutamate receptor expression.

Genes that specify cell fate can influence multiple aspects of neuronal differentiation, including axon guidance, target selection and synapse formation. Mutations in the unc-42 gene disrupt axon guidance along the C. elegans ventral nerve cord and cause distinct functional defects in sensory-locomotory neural circuits. Here we show that unc-42 encodes a novel homeodomain protein that specifies...

متن کامل

Postnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration

Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...

متن کامل

Postnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration

Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...

متن کامل

Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein.

An important aspect of the specification of neuronal fate is the choice of neurotransmitter. In Caenorhabditis elegans the neurotransmitter GABA is synthesized by the UNC-25 glutamic acid decarboxylase (GAD) and packaged into synaptic vesicles by the UNC-47 transporter. Both unc-25 and unc-47 are expressed in 26 GABAergic neurons of five different types. Previously, we have identified that the ...

متن کامل

Control of neuronal subtype identity by the C. elegans ARID protein CFI-1.

The Caenorhabditis elegans hermaphrodite nervous system is composed of 302 neurons that fall into at least 118 diverse classes. Here we describe cfi-1, a gene that contributes to the development of neuronal diversity. cfi-1 promotes appropriate differentiation of the URA sensory neurons and inhibits URA from expressing the male-specific CEM neuronal fate. The UNC-86 POU homeodomain protein is p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 5  شماره 

صفحات  -

تاریخ انتشار 2001